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ABSTRACT 

Simple enhancements to the standard population operators of 

mutation and crossover, utilizing Abstract Expression Grammars, 

are investigated. In previous works, Abstract Expression 

Grammars have been used to integrate Genetic Algorithms, 

Genetic Programming, Swarm Intelligence, and Differential 

Evolution, into a seamlessly unified approach to symbolic 

regression. In this work, the potential for Abstract Expression 

Grammars to have a direct impact on the classic Genetic 

Programming mutation and crossover operators is demonstrated. 

The features of abstract expression grammars are explored, details 

of abstract mutation and crossover are provided, and the 

beneficial effects of abstract mutation and crossover are tested 

with several published nonlinear regression problems. 

Categories and Subject Descriptors 

I.2.2 [Artificial Intelligence]: Automatic Programming - Program 

Synthesis.  

General Terms  
terms: Algorithms  

Keywords  
keywords: Abstract Expression Grammars, Differential Evolution, 

Genetic Programming, Particle Swarm, Symbolic Regression. 

1. INTRODUCTION 
Large scale general nonlinear regression is currently practiced 

largely using genetic programming under the name Symbolic 

Regression [5]. However, as a nonlinear regression algorithm, 

genetic programming has a number of well known difficulties 

including expression bloat and lack of fine grain control over the 

solution produced. On the other hand, swarm intelligence [1] and 

differential evolution [8] provide excellent fine grain control but 

are not easily linked to general algebraic expressions.  

In [3] and [4] Abstract Expression Grammars are used to combine 

swarm intelligence, differential evolution, and genetic 

programming into a seamlessly unified algorithm for general 

nonlinear regression. In this work, abstract expression grammars 

are used to directly enhance the classic genetic programming 

population operators of mutation and crossover into two new 

population operators: abstract mutation and abstract crossover. 

The compelling rationale for abstract mutation and crossover will 

be developed before presenting a general overview of the 

processes of abstract mutation and abstract crossover. Background 

information on nonlinear regression systems and abstract 

expression grammars will be presented before developing the 

technical details of the processes of abstract mutation and abstract 

crossover. Finally, the beneficial effects of abstract mutation and 

abstract crossover, as compared with standard mutation and 

crossover, will be investigated by comparative testing on several 

published nonlinear regression problems.  

2. Abstract Mutation and Crossover Intro 
In genetic programming [5] the basic mutation population 

operator selects a random segment from an expression such as: 

2.1  f = (log(x3)/sin(x2*45.3))>x4 ? tan(x6) : cos(x3)  

The selected segment is highlighted “sin(x2*45.3)” above. In 

standard mutation the selected segment is replaced with a new 

randomly constructed segment such as: 

2.2  f = (log(x3)/(2.6+log(x2)))>x4 ? tan(x6) : cos(x3)  

Notice that in standard mutation the selected segment  

“sin(x2*45.3)” may have nothing in common with the mutated 

segment “(x5+log(2.6))”  which replaces it. In abstract mutation 

the selected segment “sin(x2*45.3)” is replaced with a related 

abstracted segment abstract[“sin(x2*45.3)”]. Similarly, in genetic 

programming [5] the basic crossover population operator selects 

two random segments from two expressions such as: 

2.3  f = (log(x3)/sin(x2*45.3))>x4 ? tan(x6) : cos(x3)  

2.4  f = (log(x3)/cube(x2*45.3))>x4 ? sin(x6) : tan(x3)  

The selected segments are swapped “crossed over” in the 

respective expressions as follows:  

2.5  f = (sin(x6)/sin(x2*45.3))>x4 ? tan(x6) : cos(x3)  

2.6  f = (log(x3)/cube(x2*45.3))>x4 ? log(x3) : tan(x3)  

In abstract crossover each selected segment is abstracted before 

crossover abstract[“log(x3)”] and abstract[“sin(x6)”]. Before we 

can explain why the abstraction process is so logically compelling 

and what the actual details of the abstraction process are, we must 

provide some background information on nonlinear regression 

and on abstract expression grammars. 

3. Background on Regression Systems 
A general linear regression system accepts an input matrix, X, of 

N rows and M columns and a dependent variable vector, Y, of 

length N. The dependent vector Y is related to X thru the 

(hopefully but not necessarily linear) function, f, as follows: Y[n] 

= f(X[n]). The output of a linear regression system will be a 

coefficient vector, C, of length M, such that the inner product of C 

with each row of X produces an estimate vector, EY, which 

minimizes the least square error between EY and Y. General 

linear regression systems can easily be constructed using Gaussian 

methods. 



For our purposes in the remainder of this paper, we will normalize 

all least squared error measurements by dividing by the standard 

deviation of Y. We will call this the Normalized Least Squared 

Error (NLSE). 

A general nonlinear regression system accepts an input matrix, X, 

of N rows and M columns and a dependent variable vector, Y, of 

length N. The dependent vector Y is related to X thru the (quite 

possibly nonlinear) function, f, as follows: Y[n] = f(X[n]). The 

output of a nonlinear regression system will be a program object 

(which we will hereinafter call an Estimator Agent), f, such that 

invoking f on each row of X produces an estimate vector, EY, 

which minimizes the normalized least square error between EY 

and Y. General nonlinear regression systems can be constructed 

using genetic programming methods[3] [4] [5] [7]. 

The capabilities of the agent, f, will be constrained by some sort 

of algebraic expression grammar built into the nonlinear 

regression system. More to the point, the computer codes 

executed upon invoking f will be a compilation of some statement 

in said grammar.  

4. A Concrete Expression Grammar 
A simple concrete expression grammar suitable for use in most 

nonlinear regression systems would be a C-like grammar with the 

following basic elements. 

4.1 Real Numbers: 3.45, -.0982, and 100.389 

4.2 Row Features: x1, x2, and x5. 

4.3 Operators: +, *, /, %, <, <=, ==, !=, >=, > 

4.4 Functions: sqrt(), log(), cube(), sin(), tan(), max(), etc. 

4.5 Conditional: (expr1 < expr2) ? expr3 : expr4 

A nonlinear regression system might create its final estimator 

agent using mutation, cross over, or any number of techniques; 

but, the final estimator agent might easily be a compilation of a 

basic concrete expression such as: 

4.6  f = (log(x3)/sin(x2*45.3))>x4 ? tan(x6) : cos(x3)  

Computing an NLSE score for f requires only a single pass over 

every row of X and results in an attribute being added to f by 

executing the “score” method compiled into f as follows.  

4.7 f.NLSE = f.score(X,Y). 

5. Abstract Constants 
Suppose that we are satisfied with the form of the expression in 

(4.6); but, we are not sure that the real constant 45.3 is optimal. 

The standard genetic programming algorithm does not provide a 

mechanism for optimizing the real constant, 45.3, other than 

running the symbolic regression system for more iterations; and, 

then we are not guaranteed of receiving an improved answer in 

the same form as in (4.6).  

We can enhance our nonlinear regression system with the ability 

to optimize individual real constants by adding abstract constant 

rules to our built-in algebraic expression grammar. 

5.1 Abstract Constants: c1, c2, and c10 

Abstract constants represent placeholders for real numbers which 

are to be optimized by the nonlinear regression system. To further 

optimize f we would alter the expression in (4.6) as follows. 

5.2 f = (log(x3)/sin(x2*c1))>x4 ? tan(x6) : cos(x3) 

The compiler adds a new real number vector, C, attribute to f such 

that f.C has as many elements as there are abstract constants in 

(5.2). Optimizing this version of f requires that the built-in 

“score” method compiled into f be changed from a single pass to a 

multiple pass algorithm in which the real number values in the 

abstract constant vector, f.C, are iterated until the expression in 

(5.2) produces an optimized NLSE. This new score method has 

the side effect that executing f.score(X,Y) also alters the abstract 

constant vector, f.C, to optimal real number choices. Clearly the 

particle swarm [1] and differential evolution [8] algorithms 

provide excellent candidate algorithms for optimizing f.C and 

they can easily be compiled into f.score by common compilation 

techniques currently in the main stream.  

Summarizing, we have a new grammar term, c1, which is a 

reference to the 1st element of the real number vector, f.C (in C 

language syntax c1 == f.C[1]). The f.C vector is optimized by 

scoring f, then altering the values in f.C, then repeating the 

process iteratively until an optimum NLSE is achieved. 

Two important features of abstract expression grammars are worth 

mention here. The overall genetic programming algorithms within 

the nonlinear regression system do not have to be altered because 

the swarm and differential learning enhancements are hidden 

inside the “score” method by the abstract expression compiler 

when appropriate. Furthermore, as Riccardo Poli [11] has pointed 

out, a new population operator can be defined which converts 

abstract expressions into their concrete counterparts. For instance, 

the estimator agent in (5.2) is optimized with: 

5.3 f.C == < 45.396 > 

Then the optimized estimator agent in (5.2) has a concrete 

conversion counterpart as follows: 

5.4 f = (log(x3)/sin(x2*45.396))>x4 ? tan(x6) : cos(x3) 

Since abstract expressions are not grammatically excessively 

different than concrete expressions, the genetic programming 

logic in the nonlinear regression system will operate on either type 

of expression. At different stages in the evolutionary process 

population operators can be introduced which convert abstract 

expressions into their optimized concrete counterparts, or even 

new mutation operators which convert concrete expressions into 

abstract expressions. 

6. Abstract Features 
Suppose that we are satisfied with the form of the expression in 

(4.6); but, we are not sure that the features, x2, x3, and x6, are 

optimal choices. The standard genetic programming algorithm 

does not provide a mechanism for optimizing these features other 

than running the symbolic regression system for more iterations; 

and, then we are not guaranteed of receiving an improved answer 

in the same form as in (4.6). 

We can enhance our nonlinear regression system with the ability 

to optimize individual features by adding abstract feature rules to 

our built-in algebraic expression grammar. 

6.1 Abstract Features: v1, v2, and v10 

Abstract features represent placeholders for features which are to 

be optimized by the nonlinear regression system. To further 

optimize f we would alter the expression in (4.6) as follows. 



6.2 f = (log(v1)/sin(v2*45.3))>v3 ? tan(v4) : cos(v1) 

The compiler adds a new integer vector, V, attribute to f such that 

f.V has as many elements as there are abstract features in (6.2). 

Each integer element in the f.V vector is constrained between 1 

and M, and represents a choice of feature (in x). Optimizing this 

version of f requires that the built-in “score” method compiled 

into f be changed from a single pass to a multiple pass algorithm 

in which the integer values in the abstract feature vector, f.V, are 

iterated until the expression in (6.2) produces an optimized NLSE. 

This new score method has the side effect that executing 

f.score(X,Y) also alters the abstract feature vector, f.V, to integer 

choices selecting optimal features (in x). Clearly the genetic 

algorithm [6], discrete particle swarm [1], and discrete differential 

evolution [8] algorithms provide excellent candidate algorithms 

for optimizing f.V and they can easily be compiled into f.score by 

common compilation techniques currently in the main stream. 

Summarizing, we have a new grammar term, v1, which is an 

indirect feature reference thru to the 1st element of the integer 

vector, f.V (in C language syntax v1 == x[f.V[1]]). The f.V 

vector is optimized by scoring f, then altering the values in f.V, 

then repeating the process iteratively until an optimum NLSE is 

achieved. 

For instance, the estimator agent in (6.2) is optimized with: 

6.3 f.V == < 2, 4, 1, 6 > 

Then the optimized estimator agent in (6.2) has a concrete 

conversion counterpart as follows: 

6.4 f = (log(x2)/sin(x4*45.396))>x1 ? tan(x6) : cos(x2) 

7. Abstract Functions 
Similarly, we can enhance our nonlinear regression system with 

the ability to optimize individual features by adding abstract 

functions rules to our built-in algebraic expression grammar. 

7.1 Abstract Functions: f1, f2, and f10 

Abstract functions represent placeholders for built-in functions 

which are to be optimized by the nonlinear regression system. To 

further optimize f we would alter the expression in (4.6) as 

follows. 

7.2 f = (f1(x3)/f2(x2*45.3))>x4 ? f3(x6) : f4(x3) 

The compiler adds a new integer vector, F, attribute to f such that 

f.F has as many elements as there are abstract features in (7.2). 

Each integer element in the f.F vector is constrained between 1 

and (number of built-in functions available in the expression 

grammar), and represents a choice of built-in function. 

Optimizing this version of f requires that the built-in “score” 

method compiled into f be changed from a single pass to a 

multiple pass algorithm in which the integer values in the abstract 

function vector, f.F, are iterated until the expression in (7.2) 

produces an optimized NLSE. This new score method has the side 

effect that executing f.score(X,Y) also alters the abstract function 

vector, f.F, to integer choices selecting optimal built-in functions. 

Clearly the genetic algorithm [6], discrete particle swarm [1], and 

discrete differential evolution [8] algorithms provide excellent 

candidate algorithms for optimizing f.F and they can easily be 

compiled into f.score by common compilation techniques 

currently in the main stream. 

Summarizing, we have a new grammar term, f1, which is an 

indirect function reference thru to the 1st element of the integer 

vector, f.F (in C language syntax f1 == funtionList[f.F[1]]). The 

f.F vector is optimized by scoring f, then altering the values in f.F, 

then repeating the process iteratively until an optimum NLSE is 

achieved. 

For instance, if the valid function list in the expression grammar is 

7.3 < log, sin, cos, tan, max, min, avg, cube, sqrt > 

And the estimator agent in (7.2) is optimized with: 

7.4 f.F == < 1, 8, 2, 4 > 

Then the optimized estimator agent in (7.2) has a concrete 

conversion counterpart as follows: 

7.5 f = (log(x3)/cube(x2*45.3))>x4 ? sin(x6) : tan(x3) 

The built-in function argument arity issue is easily resolved by 

having each built-in function ignore any excess arguments and 

substitute defaults for any missing arguments or by having the 

number of arguments automatically restrict the choice of concrete 

functions to those with the proper arity. 

Furthermore random noise functions, such as in [9], can easily be 

added to the list of available built-in functions in the expression 

grammar. 

8. Abstract Mutation and Crossover Details 
A set of simple rules define the process of abstracting an 

expression segment in both abstract mutation and abstract 

crossover as follows: 

8.1 Real Numbers: 3.45, -.0982  c0, c1 

8.2 Row Features: x1, x4  v0, v1 

8.3 Operators: +, *, /  f0, f1 

8.4 Functions: sqrt(), log(), cube()  f0, f1, f3 

Using these simple rules, the abstract mutation population 

operator selects a random segment from an expression such as: 

8.5  f = (log(x3)/sin(x2*45.3))>x4 ? tan(x6) : cos(x3)  

The selected segment is highlighted “sin(x2*45.3)” above. In 

abstract mutation the selected segment is replaced with its abstract 

conversion where sin  f0, x2  v0, *  f1, and 45.3  c0 as 

follows: 

8.6  f = (log(x3)/f0(f1(v0,c0)))>x4 ? tan(x6) : cos(x3)  

Similarly, the abstract crossover population operator selects two 

random segments from two expressions such as: 

8.7  f = (log(x3)/sin(x2*45.3))  

8.8  f = (tan(x3)/cube(x2*45.3))  

The selected segments are first “abstracted” and then swapped 

“crossed over” in the respective expressions as follows:  

8.9  f = ((x2*45.3)/sin(x2*45.3))  

 which is abstracted into: 

8.10 f = ((f0(v0,c0))/sin(x2*45.3))  

8.11  f = (tan(x3)/cube(log(x3)))  

 which is abstracted into: 

8.12  f = (tan(x3)/cube(f0(v0)))  



After abstract mutation or crossover, the new abstract expressions 

are optimized by the regression system and their optimized 

concrete conversions are saved in proper the evolutionary 

populations. 

The compelling first principles argument for abstract mutation and 

crossover is as follows. It is likely that the regression system will 

find optimized substitutions for f0, v0, and c0 which will make 

8.10  f = ((f0(v0,c0))/sin(x2*45.3))  

a more fit individual than the simple 

8.9  f = ((x2*45.3)/sin(x2*45.3))  

Especially since (8.9) was created by swapping “(x2*45.3)” into 

(8.7) without any analysis of the consequences. 

Of course a compelling first principles argument is no substitute 

for experimental evidence. So the remainder of this work details 

the results from comparative testing standard mutation and 

crossover with abstract mutation and crossover on several difficult 

previously problems. 

9. Testing Regimen 
We use the nine base test cases from [3] as a training set, to test 

for improvements in accuracy. Our testing regimen uses only 

statistical best practices out-of-sample testing techniques. We test 

each of the nine test cases on matrices of 10000 rows by 5 

columns with no noise, and on matrices of 10000 rows by 20 

columns with 40% noise, before drawing any performance 

conclusions. Taking all these combinations together, this creates a 

total of 18 separate test cases. 

For each test a training matrix is filled with random numbers 

between -50 and +50. The target expression for the test case is 

applied to the training matrix to compute the dependent variable 

and the required noise is added. 

The symbolic regression system is trained on the training matrix 

to produce the regression champion. Following training, a testing 

matrix is filled with random numbers between -50 and +50. The 

target expression for the test case is applied to the testing matrix 

to compute the dependent variable and the required noise is 

added. The regression champion is evaluated on the testing matrix 

for all scoring (i.e. out of sample testing). 

Standard regression studies often utilize least squares error (LSE) 

as a fitness measure. In our case we normalize by dividing LSE by 

the standard deviation of "Y" (dependent variable). This 

normalization allows us to meaningfully compare the normalized 

least squared error (NLSE) between different problems. 

10. Previous Results on Nine Base Problems 
The previously published results [4] of training on the nine base 

training models on 10,000 rows and five columns training for 20 

generations with no random noise and no abstract mutation or 

crossover, are shown below (The nine base test cases are 

described in detail in [3]).  

In general, training time is very reasonable given the difficulty of 

some of the problems and the limited number of training 

generations. Average error varies from excellent to poor with the 

linear and cubic problems showing the best performance.  

In some of the test cases, testing error is either close to or exceeds 

the standard deviation of Y (not very good); however, in many of 

the test cases classification is below 0.20. (very good). 

Unfortunately, extreme differences between training error and 

testing error in the very difficult mixed and ratio problems suggest 

over-fitting and bring into question to relevance of of the low 

training errors in those test cases. 

Table 10.1: Results for 10K rows by 5 cols no random noise  

Test 

Case 

Train 

NLSE 

Test 

NLSE 

Linear .01 .01 

Cubic .00 .00 

hidden .00 .05 

Cross .37 .39 

elipse .00 .00 

cyclic .04 .14 

hyper .00 .00 

mixed .24 1.65 

ratio .03 1.05 

 

The previously published results [4] of training on the nine base 

training models on 10,000 rows and twenty columns training for 

20 generations with 40% random noise and no abstract mutation 

or crossover, are shown below. 

Table 20.2: Results for 10K rows by 20 cols 40% random noise 

Test 

Case 

Train 

NLSE 

Test 

NLSE 

Linear .11 .11 

Cubic .11 .11 

hidden .99 .99 

Cross .80 .80 

elipse .45 .46 

cyclic .39 .91 

hyper .96 .96 

mixed .69 1.85 

ratio .95 1.18 

Clearly the system, without abstract mutation and crossover, 

performs most poorly on the test cases hidden, mixed  and ratio 

with conditional target expressions. There is much evidence of 

over-fitting shown by the extreme differences between training 

error and testing error on some test cases. 

11. Enhanced Results on Nine Base Problems 
The enhanced results on the nine base training models on 10,000 

rows and five columns training for 20 generations with no random 

noise but with abstract mutation and crossover, are shown below. 



Table 31.1: Results for 10K rows by 5 cols no random noise  

Test 

Case 

Train 

NLSE 

Test 

NLSE 

Linear .00 .00 

Cubic .00 .00 

hidden .00 .00 

Cross .00 .00 

elipse .00 .00 

cyclic .02 .00 

hyper .00 .00 

mixed .97 .98 

ratio .96 .98 

 

The enhanced results on the nine base training models on 10,000 

rows and twenty columns training for 20 generations with 40% 

random noise and with abstract mutation and crossover, are 

shown below. 

Table 41.2: Results for 10K rows by 20 cols 40% random noise 

Test 

Case 

Train 

NLSE 

Test 

NLSE 

Linear .11 .11 

Cubic .11 .11 

hidden .11 .11 

Cross .69 .72 

elipse .42 .43 

cyclic .39 .35 

hyper .48 .50 

mixed .92 .96 

ratio .91 .95 

 

Clearly, adding abstract mutation and crossover has improved 

system performance. On most tests, performance is very 

reasonable given the difficulty of some of the problems and the 

limited training time allocated. Even on the more difficult mixed 

and ratio problems all evidence of over-fitting has disappeared.  

Normalized least squared error varies from excellent to poor with 

the linear, cubic, and hidden problems showing the best 

performance even with 40% noise.  

These positive results have been achieved by simply converting 

5% of all standard mutations to abstract mutations, and converting 

5% of all standard crossovers to abstract crossovers. Empirical 

analysis of the mutation and crossover population operators shows 

that standard mutation and crossover tend to jump out of local 

minima into different random areas of the fitness landscape; while 

abstract mutation and crossover tend to provide relatively more 

fine grain exploration of the local landscape. 

12. Training Epochs in Detail 
The following test case provides an excellent example of how 

training proceeds faster with 5% abstract mutation and crossover 

than with only standard mutation and crossover.  

12.1 squareRoot: y  = 1.23 + (1.23*(sqrt(x1*x1*x1))  

-  (9.16*sqrt(x1*x2*x2)) 

+ (11.27*sqrt(x1*x2*x3)) 

+ (7.42*sqrt(x2*x3*x4)) 

+ (8.21*sqrt(x3*x4*x5))) 

Using the nonlinear regression system described in [3] [4], we 

construct an X matrix 10,000 by 5, filled with random numbers 

between -50 and +50, and run the “squareRoot” training model 

(12.1) on each row of X to create the Y dependent vector. When 

we train quickly (for only 50 generations) we see the following 

interim training errors at the end of each epoch. 

Table 52.2: Regression Results during 50 Generations 

After 

Generation 

Interim Training 

NLSE 

(standard only) 

Interim Training 

NLSE 

(5% abstract) 

10 .9971 .9956 

20 .9520 .7790 

30 .8512 .5987 

40 .7618 .4668 

50 .6362 .2805 

Final .6312 .2803 

 

Clearly the training run converges faster with 5% abstract 

mutation and crossover than with only standard mutation and 

crossover. 

13. Summary 
There appears little benefit from keeping such valuable, yet 

disparate, algorithms as GA, GP, Particle Swarm, Differential 

Evolution, and even Gaussian Regression, separated, in isolation, 

and prevented from working together smoothly in a commercial 

nonlinear regression system. Abstract Expression Grammars have 

the potential to integrate Genetic Algorithms, Genetic 

Programming, Swarm Intelligence, Differential Evolution, and 

even Gaussian Regression into a seamlessly unified array of tools 

for use in industrial strength nonlinear regression systems.  

  

Furthermore, in this work, abstract expression grammars provide 

value in directly enhancing the classic genetic programming 

population operators of mutation and crossover. The new 

population operators, abstract mutation and abstract crossover, 

provide both a compelling ex-ante rationale and compelling ex-

post empirical evidence for the beneficial effects of abstract 

mutation and crossover, as compared with standard mutation and 

crossover, in comparative testing on several published nonlinear 

regression problems. 



14. ACKNOWLEDGMENTS 
Our thanks to Riccardo Poli for his thoughtful suggestions on new 

population operators possible with abstract expression grammars. 

15. REFERENCES 
[1] Eberhardt, Russel, Shi, Yuhui, and Kennedy, James. 2001 

Swarm Intelligence. Morgan Kaufmann, New York, USA. 

http://www.amazon.com/Swarm-Intelligence-Morgan-

Kaufmann-

Artificial/dp/1558605959/ref=pd_bbs_sr_1?ie=UTF8&s=bo

oks&qid=1228938121&sr=8-1 

[2] Hornby, Gregory S. 2006. ALPS: The Age-Layered 

Population Structure for Reducing the Problem of Premature 

Convergence. In Keijzer, Maarten, Catolico, Mike, Arnold, 

Dirk, Babobiv, Vladan, Blum, Christian, Bosman, Peter, 

Butz, Martin, V., Coello Coello, Carlos, Dasgupta, Dipankar, 

Ficici, Sevan, G., Foster, James, Hernandez-Aguirre, Arturo, 

Hornby, Greg, Lipson, Hod, McMinn, Phil, Moore, Jason, 

Raidl, Gunter, Rothlauf, Franz, Ryan, Conor, and Thierens, 

Dirk, editors, GECCO 2006: Proceedings of the 8th annual 

conference on Genetic and Evolutionary Computation, 

volume 1, pages 815-822, Seattle, Washington, USA. ACM 

Press. 

http://portal.acm.org/citation.cfm?id=1143997&coll=GUIDE

&dl=GUIDE&CFID=14570833&CFTOKEN=82862158. 

[3] Korns, Michael F. 2007. Large-Scale, Time-Constrained 

Symbolic Regression-Classification. In Riolo, Rick, L, 

Soule, Terrance, and Wortzel, Bill, editors, Genetic 

Programming Theory and Practive V, pages 53-68, New 

York, New York, USA. Springer. 

http://www.springer.com/computer/artificial/book/978-0-

387-76307-1 

[4] Korns, Michael F., and Nunez, Loryfel, 2008. Profiling 

Symbolic Regression-Classification. In Riolo, Rick, L, 

Soule, Terrance, and Wortzel, Bill, editors, Genetic 

Programming Theory and Practive VI, pages 215-228, New 

York, New York, USA. Springer. 

http://www.springer.com/computer/artificial/book/978-0-

387-87622-1 

[5] Koza, John, R. 1992 Genetic Programming: On 

Programming Computers by means of natural Selection. MIT 

Press, Cambridge, USA. 

http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid

=5888 

[6] Man, Kim-Fung, Tang, Kit-Sang, and Kwong, Sam. 1999. 

Genetic Algorithms. Springer, New York, USA. 

http://www.springer.com/engineering/robotics/book/978-1-

85233-072-9 

[7] O`Neil, Michael, and Ryan, Conor. 2003. Grammatical 

Evolution: Evolutionary Automatic Programming in an 

Arbitrary Language. Kluwer Academic Publishers, Dortrecht, 

Netherlands. 

http://www.alibris.com/booksearch?binding=&mtype=&key

word=Grammatical+Evolution&hs.x=6&hs.y=15 

[8] Price, Kenneth, Storn, Rainer, and Lampinen, Jouni 2005. 

Differential Evolution: A Practical Approach to Global 

Optimization. Springer, New York, USA. 

http://www.springer.com/computer/foundations/book/978-3-

540-20950-8 

[9] Schmidt, Michael D, and Lipson, Hod. 2007. Learning 

Noise. In Thierens, Dirk, Beyer, Hans-Georg, Bongard, Josh, 

Branke, Jurgen, Clark, John Andrew, Cliff, Dave, Congdon, 

Clare Bates, Deb, Kalyanmoy, Doerr, Benjamin, Kovacs, 

Tim, Kumar, Sanjeev, Miller, Julian F., Moore, Jason, 

Neumann, Frank, Pelikan, Martin, Poli, Riccardo, Sastry, 

Kumara, Stanley, Kenneth Owen, Stutzle, Thomas, Watson, 

Richard A., Wegener, Ingo, editors, GECCO 2007: 

Proceedings of the 9th annual conference on Genetic and 

Evolutionary Computation, volume 2, pages 1680-1685, 

London. ACM Press. 

http://portal.acm.org/citation.cfm?id=1143997&coll=GUIDE

&dl=GUIDE&CFID=14570833&CFTOKEN=82862158. 

[10] Cristianini, Nello, and Shawe-Taylor, John, 2000. An 

Introduction to Support Vector Machines and Other Kernel-

based Learning Mmethods. Cambridge University press. 

http://www.amazon.com/Introduction-Support-Machines-

Kernel-based-

Learning/dp/0521780195/ref=pd_bbs_sr_2?ie=UTF8&s=boo

ks&qid=1228947802&sr=8-2 

[11] Poli, Riccardo, Langdon, William B., and McPhee, Nicholas 

Freitag, 2008.  A Field Guide to Genetic Programming. 

Published via http://lulu.com and freely available at 

http://www.gp-field-guide.org.uk  (with contributions by J. 

R. Koza).  

 

 

 

 

http://www.amazon.com/Swarm-Intelligence-Morgan-Kaufmann-Artificial/dp/1558605959/ref=pd_bbs_sr_1?ie=UTF8&s=books&qid=1228938121&sr=8-1
http://www.amazon.com/Swarm-Intelligence-Morgan-Kaufmann-Artificial/dp/1558605959/ref=pd_bbs_sr_1?ie=UTF8&s=books&qid=1228938121&sr=8-1
http://www.amazon.com/Swarm-Intelligence-Morgan-Kaufmann-Artificial/dp/1558605959/ref=pd_bbs_sr_1?ie=UTF8&s=books&qid=1228938121&sr=8-1
http://www.amazon.com/Swarm-Intelligence-Morgan-Kaufmann-Artificial/dp/1558605959/ref=pd_bbs_sr_1?ie=UTF8&s=books&qid=1228938121&sr=8-1
http://portal.acm.org/citation.cfm?id=1143997&coll=GUIDE&dl=GUIDE&CFID=14570833&CFTOKEN=82862158
http://portal.acm.org/citation.cfm?id=1143997&coll=GUIDE&dl=GUIDE&CFID=14570833&CFTOKEN=82862158
http://www.springer.com/computer/artificial/book/978-0-387-76307-1
http://www.springer.com/computer/artificial/book/978-0-387-76307-1
http://www.springer.com/computer/artificial/book/978-0-387-87622-1
http://www.springer.com/computer/artificial/book/978-0-387-87622-1
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=5888
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=5888
http://www.springer.com/engineering/robotics/book/978-1-85233-072-9
http://www.springer.com/engineering/robotics/book/978-1-85233-072-9
http://www.alibris.com/booksearch?binding=&mtype=&keyword=Grammatical+Evolution&hs.x=6&hs.y=15
http://www.alibris.com/booksearch?binding=&mtype=&keyword=Grammatical+Evolution&hs.x=6&hs.y=15
http://www.springer.com/computer/foundations/book/978-3-540-20950-8
http://www.springer.com/computer/foundations/book/978-3-540-20950-8
http://portal.acm.org/citation.cfm?id=1143997&coll=GUIDE&dl=GUIDE&CFID=14570833&CFTOKEN=82862158
http://portal.acm.org/citation.cfm?id=1143997&coll=GUIDE&dl=GUIDE&CFID=14570833&CFTOKEN=82862158
http://www.amazon.com/Introduction-Support-Machines-Kernel-based-Learning/dp/0521780195/ref=pd_bbs_sr_2?ie=UTF8&s=books&qid=1228947802&sr=8-2
http://www.amazon.com/Introduction-Support-Machines-Kernel-based-Learning/dp/0521780195/ref=pd_bbs_sr_2?ie=UTF8&s=books&qid=1228947802&sr=8-2
http://www.amazon.com/Introduction-Support-Machines-Kernel-based-Learning/dp/0521780195/ref=pd_bbs_sr_2?ie=UTF8&s=books&qid=1228947802&sr=8-2
http://www.amazon.com/Introduction-Support-Machines-Kernel-based-Learning/dp/0521780195/ref=pd_bbs_sr_2?ie=UTF8&s=books&qid=1228947802&sr=8-2
http://lulu.com/
http://www.gp-field-guide.org.uk/

