
Mutation and Crossover with Abstract Expression

Grammars
Michael F. Korns

Freeman Investment Management
1 Plum Hollow

Henderson, Nevada 89052
1 (702) 837 3498

mkorns@korns.com

ABSTRACT

Simple enhancements to the standard population operators of

mutation and crossover, utilizing Abstract Expression Grammars,

are investigated. In previous works, Abstract Expression

Grammars have been used to integrate Genetic Algorithms,

Genetic Programming, Swarm Intelligence, and Differential

Evolution, into a seamlessly unified approach to symbolic

regression. In this work, the potential for Abstract Expression

Grammars to have a direct impact on the classic Genetic

Programming mutation and crossover operators is demonstrated.

The features of abstract expression grammars are explored, details

of abstract mutation and crossover are provided, and the

beneficial effects of abstract mutation and crossover are tested

with several published nonlinear regression problems.

Categories and Subject Descriptors

I.2.2 [Artificial Intelligence]: Automatic Programming - Program

Synthesis.

General Terms
terms: Algorithms

Keywords
keywords: Abstract Expression Grammars, Differential Evolution,

Genetic Programming, Particle Swarm, Symbolic Regression.

1. INTRODUCTION
Large scale general nonlinear regression is currently practiced

largely using genetic programming under the name Symbolic

Regression [5]. However, as a nonlinear regression algorithm,

genetic programming has a number of well known difficulties

including expression bloat and lack of fine grain control over the

solution produced. On the other hand, swarm intelligence [1] and

differential evolution [8] provide excellent fine grain control but

are not easily linked to general algebraic expressions.

In [3] and [4] Abstract Expression Grammars are used to combine

swarm intelligence, differential evolution, and genetic

programming into a seamlessly unified algorithm for general

nonlinear regression. In this work, abstract expression grammars

are used to directly enhance the classic genetic programming

population operators of mutation and crossover into two new

population operators: abstract mutation and abstract crossover.

The compelling rationale for abstract mutation and crossover will

be developed before presenting a general overview of the

processes of abstract mutation and abstract crossover. Background

information on nonlinear regression systems and abstract

expression grammars will be presented before developing the

technical details of the processes of abstract mutation and abstract

crossover. Finally, the beneficial effects of abstract mutation and

abstract crossover, as compared with standard mutation and

crossover, will be investigated by comparative testing on several

published nonlinear regression problems.

2. Abstract Mutation and Crossover Intro
In genetic programming [5] the basic mutation population

operator selects a random segment from an expression such as:

2.1 f = (log(x3)/sin(x2*45.3))>x4 ? tan(x6) : cos(x3)

The selected segment is highlighted “sin(x2*45.3)” above. In

standard mutation the selected segment is replaced with a new

randomly constructed segment such as:

2.2 f = (log(x3)/(2.6+log(x2)))>x4 ? tan(x6) : cos(x3)

Notice that in standard mutation the selected segment

“sin(x2*45.3)” may have nothing in common with the mutated

segment “(x5+log(2.6))” which replaces it. In abstract mutation

the selected segment “sin(x2*45.3)” is replaced with a related

abstracted segment abstract[“sin(x2*45.3)”]. Similarly, in genetic

programming [5] the basic crossover population operator selects

two random segments from two expressions such as:

2.3 f = (log(x3)/sin(x2*45.3))>x4 ? tan(x6) : cos(x3)

2.4 f = (log(x3)/cube(x2*45.3))>x4 ? sin(x6) : tan(x3)

The selected segments are swapped “crossed over” in the

respective expressions as follows:

2.5 f = (sin(x6)/sin(x2*45.3))>x4 ? tan(x6) : cos(x3)

2.6 f = (log(x3)/cube(x2*45.3))>x4 ? log(x3) : tan(x3)

In abstract crossover each selected segment is abstracted before

crossover abstract[“log(x3)”] and abstract[“sin(x6)”]. Before we

can explain why the abstraction process is so logically compelling

and what the actual details of the abstraction process are, we must

provide some background information on nonlinear regression

and on abstract expression grammars.

3. Background on Regression Systems
A general linear regression system accepts an input matrix, X, of

N rows and M columns and a dependent variable vector, Y, of

length N. The dependent vector Y is related to X thru the

(hopefully but not necessarily linear) function, f, as follows: Y[n]

= f(X[n]). The output of a linear regression system will be a

coefficient vector, C, of length M, such that the inner product of C

with each row of X produces an estimate vector, EY, which

minimizes the least square error between EY and Y. General

linear regression systems can easily be constructed using Gaussian

methods.

For our purposes in the remainder of this paper, we will normalize

all least squared error measurements by dividing by the standard

deviation of Y. We will call this the Normalized Least Squared

Error (NLSE).

A general nonlinear regression system accepts an input matrix, X,

of N rows and M columns and a dependent variable vector, Y, of

length N. The dependent vector Y is related to X thru the (quite

possibly nonlinear) function, f, as follows: Y[n] = f(X[n]). The

output of a nonlinear regression system will be a program object

(which we will hereinafter call an Estimator Agent), f, such that

invoking f on each row of X produces an estimate vector, EY,

which minimizes the normalized least square error between EY

and Y. General nonlinear regression systems can be constructed

using genetic programming methods[3] [4] [5] [7].

The capabilities of the agent, f, will be constrained by some sort

of algebraic expression grammar built into the nonlinear

regression system. More to the point, the computer codes

executed upon invoking f will be a compilation of some statement

in said grammar.

4. A Concrete Expression Grammar
A simple concrete expression grammar suitable for use in most

nonlinear regression systems would be a C-like grammar with the

following basic elements.

4.1 Real Numbers: 3.45, -.0982, and 100.389

4.2 Row Features: x1, x2, and x5.

4.3 Operators: +, *, /, %, <, <=, ==, !=, >=, >

4.4 Functions: sqrt(), log(), cube(), sin(), tan(), max(), etc.

4.5 Conditional: (expr1 < expr2) ? expr3 : expr4

A nonlinear regression system might create its final estimator

agent using mutation, cross over, or any number of techniques;

but, the final estimator agent might easily be a compilation of a

basic concrete expression such as:

4.6 f = (log(x3)/sin(x2*45.3))>x4 ? tan(x6) : cos(x3)

Computing an NLSE score for f requires only a single pass over

every row of X and results in an attribute being added to f by

executing the “score” method compiled into f as follows.

4.7 f.NLSE = f.score(X,Y).

5. Abstract Constants
Suppose that we are satisfied with the form of the expression in

(4.6); but, we are not sure that the real constant 45.3 is optimal.

The standard genetic programming algorithm does not provide a

mechanism for optimizing the real constant, 45.3, other than

running the symbolic regression system for more iterations; and,

then we are not guaranteed of receiving an improved answer in

the same form as in (4.6).

We can enhance our nonlinear regression system with the ability

to optimize individual real constants by adding abstract constant

rules to our built-in algebraic expression grammar.

5.1 Abstract Constants: c1, c2, and c10

Abstract constants represent placeholders for real numbers which

are to be optimized by the nonlinear regression system. To further

optimize f we would alter the expression in (4.6) as follows.

5.2 f = (log(x3)/sin(x2*c1))>x4 ? tan(x6) : cos(x3)

The compiler adds a new real number vector, C, attribute to f such

that f.C has as many elements as there are abstract constants in

(5.2). Optimizing this version of f requires that the built-in

“score” method compiled into f be changed from a single pass to a

multiple pass algorithm in which the real number values in the

abstract constant vector, f.C, are iterated until the expression in

(5.2) produces an optimized NLSE. This new score method has

the side effect that executing f.score(X,Y) also alters the abstract

constant vector, f.C, to optimal real number choices. Clearly the

particle swarm [1] and differential evolution [8] algorithms

provide excellent candidate algorithms for optimizing f.C and

they can easily be compiled into f.score by common compilation

techniques currently in the main stream.

Summarizing, we have a new grammar term, c1, which is a

reference to the 1st element of the real number vector, f.C (in C

language syntax c1 == f.C[1]). The f.C vector is optimized by

scoring f, then altering the values in f.C, then repeating the

process iteratively until an optimum NLSE is achieved.

Two important features of abstract expression grammars are worth

mention here. The overall genetic programming algorithms within

the nonlinear regression system do not have to be altered because

the swarm and differential learning enhancements are hidden

inside the “score” method by the abstract expression compiler

when appropriate. Furthermore, as Riccardo Poli [11] has pointed

out, a new population operator can be defined which converts

abstract expressions into their concrete counterparts. For instance,

the estimator agent in (5.2) is optimized with:

5.3 f.C == < 45.396 >

Then the optimized estimator agent in (5.2) has a concrete

conversion counterpart as follows:

5.4 f = (log(x3)/sin(x2*45.396))>x4 ? tan(x6) : cos(x3)

Since abstract expressions are not grammatically excessively

different than concrete expressions, the genetic programming

logic in the nonlinear regression system will operate on either type

of expression. At different stages in the evolutionary process

population operators can be introduced which convert abstract

expressions into their optimized concrete counterparts, or even

new mutation operators which convert concrete expressions into

abstract expressions.

6. Abstract Features
Suppose that we are satisfied with the form of the expression in

(4.6); but, we are not sure that the features, x2, x3, and x6, are

optimal choices. The standard genetic programming algorithm

does not provide a mechanism for optimizing these features other

than running the symbolic regression system for more iterations;

and, then we are not guaranteed of receiving an improved answer

in the same form as in (4.6).

We can enhance our nonlinear regression system with the ability

to optimize individual features by adding abstract feature rules to

our built-in algebraic expression grammar.

6.1 Abstract Features: v1, v2, and v10

Abstract features represent placeholders for features which are to

be optimized by the nonlinear regression system. To further

optimize f we would alter the expression in (4.6) as follows.

6.2 f = (log(v1)/sin(v2*45.3))>v3 ? tan(v4) : cos(v1)

The compiler adds a new integer vector, V, attribute to f such that

f.V has as many elements as there are abstract features in (6.2).

Each integer element in the f.V vector is constrained between 1

and M, and represents a choice of feature (in x). Optimizing this

version of f requires that the built-in “score” method compiled

into f be changed from a single pass to a multiple pass algorithm

in which the integer values in the abstract feature vector, f.V, are

iterated until the expression in (6.2) produces an optimized NLSE.

This new score method has the side effect that executing

f.score(X,Y) also alters the abstract feature vector, f.V, to integer

choices selecting optimal features (in x). Clearly the genetic

algorithm [6], discrete particle swarm [1], and discrete differential

evolution [8] algorithms provide excellent candidate algorithms

for optimizing f.V and they can easily be compiled into f.score by

common compilation techniques currently in the main stream.

Summarizing, we have a new grammar term, v1, which is an

indirect feature reference thru to the 1st element of the integer

vector, f.V (in C language syntax v1 == x[f.V[1]]). The f.V

vector is optimized by scoring f, then altering the values in f.V,

then repeating the process iteratively until an optimum NLSE is

achieved.

For instance, the estimator agent in (6.2) is optimized with:

6.3 f.V == < 2, 4, 1, 6 >

Then the optimized estimator agent in (6.2) has a concrete

conversion counterpart as follows:

6.4 f = (log(x2)/sin(x4*45.396))>x1 ? tan(x6) : cos(x2)

7. Abstract Functions
Similarly, we can enhance our nonlinear regression system with

the ability to optimize individual features by adding abstract

functions rules to our built-in algebraic expression grammar.

7.1 Abstract Functions: f1, f2, and f10

Abstract functions represent placeholders for built-in functions

which are to be optimized by the nonlinear regression system. To

further optimize f we would alter the expression in (4.6) as

follows.

7.2 f = (f1(x3)/f2(x2*45.3))>x4 ? f3(x6) : f4(x3)

The compiler adds a new integer vector, F, attribute to f such that

f.F has as many elements as there are abstract features in (7.2).

Each integer element in the f.F vector is constrained between 1

and (number of built-in functions available in the expression

grammar), and represents a choice of built-in function.

Optimizing this version of f requires that the built-in “score”

method compiled into f be changed from a single pass to a

multiple pass algorithm in which the integer values in the abstract

function vector, f.F, are iterated until the expression in (7.2)

produces an optimized NLSE. This new score method has the side

effect that executing f.score(X,Y) also alters the abstract function

vector, f.F, to integer choices selecting optimal built-in functions.

Clearly the genetic algorithm [6], discrete particle swarm [1], and

discrete differential evolution [8] algorithms provide excellent

candidate algorithms for optimizing f.F and they can easily be

compiled into f.score by common compilation techniques

currently in the main stream.

Summarizing, we have a new grammar term, f1, which is an

indirect function reference thru to the 1st element of the integer

vector, f.F (in C language syntax f1 == funtionList[f.F[1]]). The

f.F vector is optimized by scoring f, then altering the values in f.F,

then repeating the process iteratively until an optimum NLSE is

achieved.

For instance, if the valid function list in the expression grammar is

7.3 < log, sin, cos, tan, max, min, avg, cube, sqrt >

And the estimator agent in (7.2) is optimized with:

7.4 f.F == < 1, 8, 2, 4 >

Then the optimized estimator agent in (7.2) has a concrete

conversion counterpart as follows:

7.5 f = (log(x3)/cube(x2*45.3))>x4 ? sin(x6) : tan(x3)

The built-in function argument arity issue is easily resolved by

having each built-in function ignore any excess arguments and

substitute defaults for any missing arguments or by having the

number of arguments automatically restrict the choice of concrete

functions to those with the proper arity.

Furthermore random noise functions, such as in [9], can easily be

added to the list of available built-in functions in the expression

grammar.

8. Abstract Mutation and Crossover Details
A set of simple rules define the process of abstracting an

expression segment in both abstract mutation and abstract

crossover as follows:

8.1 Real Numbers: 3.45, -.0982 c0, c1

8.2 Row Features: x1, x4 v0, v1

8.3 Operators: +, *, / f0, f1

8.4 Functions: sqrt(), log(), cube() f0, f1, f3

Using these simple rules, the abstract mutation population

operator selects a random segment from an expression such as:

8.5 f = (log(x3)/sin(x2*45.3))>x4 ? tan(x6) : cos(x3)

The selected segment is highlighted “sin(x2*45.3)” above. In

abstract mutation the selected segment is replaced with its abstract

conversion where sin f0, x2 v0, * f1, and 45.3 c0 as

follows:

8.6 f = (log(x3)/f0(f1(v0,c0)))>x4 ? tan(x6) : cos(x3)

Similarly, the abstract crossover population operator selects two

random segments from two expressions such as:

8.7 f = (log(x3)/sin(x2*45.3))

8.8 f = (tan(x3)/cube(x2*45.3))

The selected segments are first “abstracted” and then swapped

“crossed over” in the respective expressions as follows:

8.9 f = ((x2*45.3)/sin(x2*45.3))

 which is abstracted into:

8.10 f = ((f0(v0,c0))/sin(x2*45.3))

8.11 f = (tan(x3)/cube(log(x3)))

 which is abstracted into:

8.12 f = (tan(x3)/cube(f0(v0)))

After abstract mutation or crossover, the new abstract expressions

are optimized by the regression system and their optimized

concrete conversions are saved in proper the evolutionary

populations.

The compelling first principles argument for abstract mutation and

crossover is as follows. It is likely that the regression system will

find optimized substitutions for f0, v0, and c0 which will make

8.10 f = ((f0(v0,c0))/sin(x2*45.3))

a more fit individual than the simple

8.9 f = ((x2*45.3)/sin(x2*45.3))

Especially since (8.9) was created by swapping “(x2*45.3)” into

(8.7) without any analysis of the consequences.

Of course a compelling first principles argument is no substitute

for experimental evidence. So the remainder of this work details

the results from comparative testing standard mutation and

crossover with abstract mutation and crossover on several difficult

previously problems.

9. Testing Regimen
We use the nine base test cases from [3] as a training set, to test

for improvements in accuracy. Our testing regimen uses only

statistical best practices out-of-sample testing techniques. We test

each of the nine test cases on matrices of 10000 rows by 5

columns with no noise, and on matrices of 10000 rows by 20

columns with 40% noise, before drawing any performance

conclusions. Taking all these combinations together, this creates a

total of 18 separate test cases.

For each test a training matrix is filled with random numbers

between -50 and +50. The target expression for the test case is

applied to the training matrix to compute the dependent variable

and the required noise is added.

The symbolic regression system is trained on the training matrix

to produce the regression champion. Following training, a testing

matrix is filled with random numbers between -50 and +50. The

target expression for the test case is applied to the testing matrix

to compute the dependent variable and the required noise is

added. The regression champion is evaluated on the testing matrix

for all scoring (i.e. out of sample testing).

Standard regression studies often utilize least squares error (LSE)

as a fitness measure. In our case we normalize by dividing LSE by

the standard deviation of "Y" (dependent variable). This

normalization allows us to meaningfully compare the normalized

least squared error (NLSE) between different problems.

10. Previous Results on Nine Base Problems
The previously published results [4] of training on the nine base

training models on 10,000 rows and five columns training for 20

generations with no random noise and no abstract mutation or

crossover, are shown below (The nine base test cases are

described in detail in [3]).

In general, training time is very reasonable given the difficulty of

some of the problems and the limited number of training

generations. Average error varies from excellent to poor with the

linear and cubic problems showing the best performance.

In some of the test cases, testing error is either close to or exceeds

the standard deviation of Y (not very good); however, in many of

the test cases classification is below 0.20. (very good).

Unfortunately, extreme differences between training error and

testing error in the very difficult mixed and ratio problems suggest

over-fitting and bring into question to relevance of of the low

training errors in those test cases.

Table 10.1: Results for 10K rows by 5 cols no random noise

Test

Case

Train

NLSE

Test

NLSE

Linear .01 .01

Cubic .00 .00

hidden .00 .05

Cross .37 .39

elipse .00 .00

cyclic .04 .14

hyper .00 .00

mixed .24 1.65

ratio .03 1.05

The previously published results [4] of training on the nine base

training models on 10,000 rows and twenty columns training for

20 generations with 40% random noise and no abstract mutation

or crossover, are shown below.

Table 20.2: Results for 10K rows by 20 cols 40% random noise

Test

Case

Train

NLSE

Test

NLSE

Linear .11 .11

Cubic .11 .11

hidden .99 .99

Cross .80 .80

elipse .45 .46

cyclic .39 .91

hyper .96 .96

mixed .69 1.85

ratio .95 1.18

Clearly the system, without abstract mutation and crossover,

performs most poorly on the test cases hidden, mixed and ratio

with conditional target expressions. There is much evidence of

over-fitting shown by the extreme differences between training

error and testing error on some test cases.

11. Enhanced Results on Nine Base Problems
The enhanced results on the nine base training models on 10,000

rows and five columns training for 20 generations with no random

noise but with abstract mutation and crossover, are shown below.

Table 31.1: Results for 10K rows by 5 cols no random noise

Test

Case

Train

NLSE

Test

NLSE

Linear .00 .00

Cubic .00 .00

hidden .00 .00

Cross .00 .00

elipse .00 .00

cyclic .02 .00

hyper .00 .00

mixed .97 .98

ratio .96 .98

The enhanced results on the nine base training models on 10,000

rows and twenty columns training for 20 generations with 40%

random noise and with abstract mutation and crossover, are

shown below.

Table 41.2: Results for 10K rows by 20 cols 40% random noise

Test

Case

Train

NLSE

Test

NLSE

Linear .11 .11

Cubic .11 .11

hidden .11 .11

Cross .69 .72

elipse .42 .43

cyclic .39 .35

hyper .48 .50

mixed .92 .96

ratio .91 .95

Clearly, adding abstract mutation and crossover has improved

system performance. On most tests, performance is very

reasonable given the difficulty of some of the problems and the

limited training time allocated. Even on the more difficult mixed

and ratio problems all evidence of over-fitting has disappeared.

Normalized least squared error varies from excellent to poor with

the linear, cubic, and hidden problems showing the best

performance even with 40% noise.

These positive results have been achieved by simply converting

5% of all standard mutations to abstract mutations, and converting

5% of all standard crossovers to abstract crossovers. Empirical

analysis of the mutation and crossover population operators shows

that standard mutation and crossover tend to jump out of local

minima into different random areas of the fitness landscape; while

abstract mutation and crossover tend to provide relatively more

fine grain exploration of the local landscape.

12. Training Epochs in Detail
The following test case provides an excellent example of how

training proceeds faster with 5% abstract mutation and crossover

than with only standard mutation and crossover.

12.1 squareRoot: y = 1.23 + (1.23*(sqrt(x1*x1*x1))

- (9.16*sqrt(x1*x2*x2))

+ (11.27*sqrt(x1*x2*x3))

+ (7.42*sqrt(x2*x3*x4))

+ (8.21*sqrt(x3*x4*x5)))

Using the nonlinear regression system described in [3] [4], we

construct an X matrix 10,000 by 5, filled with random numbers

between -50 and +50, and run the “squareRoot” training model

(12.1) on each row of X to create the Y dependent vector. When

we train quickly (for only 50 generations) we see the following

interim training errors at the end of each epoch.

Table 52.2: Regression Results during 50 Generations

After

Generation

Interim Training

NLSE

(standard only)

Interim Training

NLSE

(5% abstract)

10 .9971 .9956

20 .9520 .7790

30 .8512 .5987

40 .7618 .4668

50 .6362 .2805

Final .6312 .2803

Clearly the training run converges faster with 5% abstract

mutation and crossover than with only standard mutation and

crossover.

13. Summary
There appears little benefit from keeping such valuable, yet

disparate, algorithms as GA, GP, Particle Swarm, Differential

Evolution, and even Gaussian Regression, separated, in isolation,

and prevented from working together smoothly in a commercial

nonlinear regression system. Abstract Expression Grammars have

the potential to integrate Genetic Algorithms, Genetic

Programming, Swarm Intelligence, Differential Evolution, and

even Gaussian Regression into a seamlessly unified array of tools

for use in industrial strength nonlinear regression systems.

Furthermore, in this work, abstract expression grammars provide

value in directly enhancing the classic genetic programming

population operators of mutation and crossover. The new

population operators, abstract mutation and abstract crossover,

provide both a compelling ex-ante rationale and compelling ex-

post empirical evidence for the beneficial effects of abstract

mutation and crossover, as compared with standard mutation and

crossover, in comparative testing on several published nonlinear

regression problems.

14. ACKNOWLEDGMENTS
Our thanks to Riccardo Poli for his thoughtful suggestions on new

population operators possible with abstract expression grammars.

15. REFERENCES
[1] Eberhardt, Russel, Shi, Yuhui, and Kennedy, James. 2001

Swarm Intelligence. Morgan Kaufmann, New York, USA.

http://www.amazon.com/Swarm-Intelligence-Morgan-

Kaufmann-

Artificial/dp/1558605959/ref=pd_bbs_sr_1?ie=UTF8&s=bo

oks&qid=1228938121&sr=8-1

[2] Hornby, Gregory S. 2006. ALPS: The Age-Layered

Population Structure for Reducing the Problem of Premature

Convergence. In Keijzer, Maarten, Catolico, Mike, Arnold,

Dirk, Babobiv, Vladan, Blum, Christian, Bosman, Peter,

Butz, Martin, V., Coello Coello, Carlos, Dasgupta, Dipankar,

Ficici, Sevan, G., Foster, James, Hernandez-Aguirre, Arturo,

Hornby, Greg, Lipson, Hod, McMinn, Phil, Moore, Jason,

Raidl, Gunter, Rothlauf, Franz, Ryan, Conor, and Thierens,

Dirk, editors, GECCO 2006: Proceedings of the 8th annual

conference on Genetic and Evolutionary Computation,

volume 1, pages 815-822, Seattle, Washington, USA. ACM

Press.

http://portal.acm.org/citation.cfm?id=1143997&coll=GUIDE

&dl=GUIDE&CFID=14570833&CFTOKEN=82862158.

[3] Korns, Michael F. 2007. Large-Scale, Time-Constrained

Symbolic Regression-Classification. In Riolo, Rick, L,

Soule, Terrance, and Wortzel, Bill, editors, Genetic

Programming Theory and Practive V, pages 53-68, New

York, New York, USA. Springer.

http://www.springer.com/computer/artificial/book/978-0-

387-76307-1

[4] Korns, Michael F., and Nunez, Loryfel, 2008. Profiling

Symbolic Regression-Classification. In Riolo, Rick, L,

Soule, Terrance, and Wortzel, Bill, editors, Genetic

Programming Theory and Practive VI, pages 215-228, New

York, New York, USA. Springer.

http://www.springer.com/computer/artificial/book/978-0-

387-87622-1

[5] Koza, John, R. 1992 Genetic Programming: On

Programming Computers by means of natural Selection. MIT

Press, Cambridge, USA.

http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid

=5888

[6] Man, Kim-Fung, Tang, Kit-Sang, and Kwong, Sam. 1999.

Genetic Algorithms. Springer, New York, USA.

http://www.springer.com/engineering/robotics/book/978-1-

85233-072-9

[7] O`Neil, Michael, and Ryan, Conor. 2003. Grammatical

Evolution: Evolutionary Automatic Programming in an

Arbitrary Language. Kluwer Academic Publishers, Dortrecht,

Netherlands.

http://www.alibris.com/booksearch?binding=&mtype=&key

word=Grammatical+Evolution&hs.x=6&hs.y=15

[8] Price, Kenneth, Storn, Rainer, and Lampinen, Jouni 2005.

Differential Evolution: A Practical Approach to Global

Optimization. Springer, New York, USA.

http://www.springer.com/computer/foundations/book/978-3-

540-20950-8

[9] Schmidt, Michael D, and Lipson, Hod. 2007. Learning

Noise. In Thierens, Dirk, Beyer, Hans-Georg, Bongard, Josh,

Branke, Jurgen, Clark, John Andrew, Cliff, Dave, Congdon,

Clare Bates, Deb, Kalyanmoy, Doerr, Benjamin, Kovacs,

Tim, Kumar, Sanjeev, Miller, Julian F., Moore, Jason,

Neumann, Frank, Pelikan, Martin, Poli, Riccardo, Sastry,

Kumara, Stanley, Kenneth Owen, Stutzle, Thomas, Watson,

Richard A., Wegener, Ingo, editors, GECCO 2007:

Proceedings of the 9th annual conference on Genetic and

Evolutionary Computation, volume 2, pages 1680-1685,

London. ACM Press.

http://portal.acm.org/citation.cfm?id=1143997&coll=GUIDE

&dl=GUIDE&CFID=14570833&CFTOKEN=82862158.

[10] Cristianini, Nello, and Shawe-Taylor, John, 2000. An

Introduction to Support Vector Machines and Other Kernel-

based Learning Mmethods. Cambridge University press.

http://www.amazon.com/Introduction-Support-Machines-

Kernel-based-

Learning/dp/0521780195/ref=pd_bbs_sr_2?ie=UTF8&s=boo

ks&qid=1228947802&sr=8-2

[11] Poli, Riccardo, Langdon, William B., and McPhee, Nicholas

Freitag, 2008. A Field Guide to Genetic Programming.

Published via http://lulu.com and freely available at

http://www.gp-field-guide.org.uk (with contributions by J.

R. Koza).

http://www.amazon.com/Swarm-Intelligence-Morgan-Kaufmann-Artificial/dp/1558605959/ref=pd_bbs_sr_1?ie=UTF8&s=books&qid=1228938121&sr=8-1
http://www.amazon.com/Swarm-Intelligence-Morgan-Kaufmann-Artificial/dp/1558605959/ref=pd_bbs_sr_1?ie=UTF8&s=books&qid=1228938121&sr=8-1
http://www.amazon.com/Swarm-Intelligence-Morgan-Kaufmann-Artificial/dp/1558605959/ref=pd_bbs_sr_1?ie=UTF8&s=books&qid=1228938121&sr=8-1
http://www.amazon.com/Swarm-Intelligence-Morgan-Kaufmann-Artificial/dp/1558605959/ref=pd_bbs_sr_1?ie=UTF8&s=books&qid=1228938121&sr=8-1
http://portal.acm.org/citation.cfm?id=1143997&coll=GUIDE&dl=GUIDE&CFID=14570833&CFTOKEN=82862158
http://portal.acm.org/citation.cfm?id=1143997&coll=GUIDE&dl=GUIDE&CFID=14570833&CFTOKEN=82862158
http://www.springer.com/computer/artificial/book/978-0-387-76307-1
http://www.springer.com/computer/artificial/book/978-0-387-76307-1
http://www.springer.com/computer/artificial/book/978-0-387-87622-1
http://www.springer.com/computer/artificial/book/978-0-387-87622-1
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=5888
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=5888
http://www.springer.com/engineering/robotics/book/978-1-85233-072-9
http://www.springer.com/engineering/robotics/book/978-1-85233-072-9
http://www.alibris.com/booksearch?binding=&mtype=&keyword=Grammatical+Evolution&hs.x=6&hs.y=15
http://www.alibris.com/booksearch?binding=&mtype=&keyword=Grammatical+Evolution&hs.x=6&hs.y=15
http://www.springer.com/computer/foundations/book/978-3-540-20950-8
http://www.springer.com/computer/foundations/book/978-3-540-20950-8
http://portal.acm.org/citation.cfm?id=1143997&coll=GUIDE&dl=GUIDE&CFID=14570833&CFTOKEN=82862158
http://portal.acm.org/citation.cfm?id=1143997&coll=GUIDE&dl=GUIDE&CFID=14570833&CFTOKEN=82862158
http://www.amazon.com/Introduction-Support-Machines-Kernel-based-Learning/dp/0521780195/ref=pd_bbs_sr_2?ie=UTF8&s=books&qid=1228947802&sr=8-2
http://www.amazon.com/Introduction-Support-Machines-Kernel-based-Learning/dp/0521780195/ref=pd_bbs_sr_2?ie=UTF8&s=books&qid=1228947802&sr=8-2
http://www.amazon.com/Introduction-Support-Machines-Kernel-based-Learning/dp/0521780195/ref=pd_bbs_sr_2?ie=UTF8&s=books&qid=1228947802&sr=8-2
http://www.amazon.com/Introduction-Support-Machines-Kernel-based-Learning/dp/0521780195/ref=pd_bbs_sr_2?ie=UTF8&s=books&qid=1228947802&sr=8-2
http://lulu.com/
http://www.gp-field-guide.org.uk/

